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SUMMARY 
The one-dimensional random wave propagation problem is analyzed. The medium is assumed to be characterized by 
a stationary index of refraction of the white-Gaussian process. By considering the initial value equation for the boundary 
value stochastic Green's function, the Fokker-Planck equation for the density function of the amplitude and phase of 
the reflected wave is constructed. By employing an averaging theorem due to Khas'minskii, the mean power reflected 
and transmitted is obtained. 

1. Introduction 

In this paper we shall examine the propagat ion of scalar waves through a one-dimensional 
random medium, the medium being characterized by a stationary index of refraction of the 
white-Gaussian type. We shall assume the wave field to be harmonically time dependent. We 
shall obtain expressions which would determine the scattering properties of the refracting 
medium, and in particular, the mean power reflected and transmitted. The formulation shall 
be carried out by constructing the Fokker--Planck equation from the appropriate  initial value 
equations for the density function of the amplitude and phase of the wave field; and then apply 
a theorem of Khas'minskii  for the limit behavior of the solution of a parabolic equation whose 
coefficients oscillate rapidly [1]. 

The beginning of our analysis will be based on results obtained in [2] and [3] in which the 
boundary value problem for the scattering region has been transformed into a Cauchy type 
initial value problem for the random boundary values of the Green's function. The idea of 
transforming the boundary value problem into an initial value problem and proceeding to 
the Fokker -P tanck  equation was motivated by [4], [5]. One of the main aims in this paper  is 
to elucidate the applicability of this approach to stochastic boundary value problems and 
apply the averaging theorem. 

The propagation of waves through random media has been examined by various approaches 
in [3, 6-10], the latter differing from the first five in that the media is considered discrete instead 
of continuous. The work in [8] is closely related to our work in that use is made of another 
theorem of Khas'minskii  for the limiting solutions of stochastic differential equations with a 
small parameter  [11], [12]. Ours is a more restricted problem in that in the latter work the 
solutions obtained are for a broader class of random media. 

2. Statement of the problem- 

Let a plane scalar wave propagate in the region x > 2 onto a bounded random medium 
contained in [0, 2]. For time harmonic dependence e - ~ '  of the wave field w (x), it follows that 
w(x) satisfies the equation 

L[w]  = w " ( x ) + U ( x ) w ( x )  = 0 ,  - oo < x < oo, (1) 

where the index of refraction k 2 (x) is given by 

fk , x<0,  
k2{ ) 0 < x < x ,  {2) 

t k o  2 , x > ; t ,  
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and/~ is a parameter defining the strength of the fluctuations in the scattering region. 7 (x; p), 
/~ ~ ~2, is a real valued stochastic process defined on the probability space (f2, S, P). Both w and 
w,x are continuous across the boundaries x =0  and x = 2. These continuity conditions together 
with Eqns. (1) and (2) constitute the appropriate boundary value problem. 

Let e-iko(x-)~ represent the incident wave in x > 2. By utilizing the radiation condition for 
Ixl--,oe, we can write the solutions outside of the scattering region as 

w(x;#)=e-ik~ ik~ x > 2 ,  (3a) 

w(x; /x) = T(2;/~)e -ik~ , x < 0.  (3b) 

where R and T are the reflected and transmitted amplitudes, respectively. They are complex 
valued random functions whose statistics we wish to determine. Due to continuity across the 
boundaries, the solution is almost surely uniquely determined everywhere for a specified 
incoming wave. By employing the continuity conditions for the wave field and Eqns. (3) we can 
restate the boundary value problem for the random medium as follows: 

L [ w ]  = 0 ,  0 < x < 4 ,  (4) 

with the boundary conditions 

M [w3 Ix= 0 -- 0 ,  (5a) 
M *  [ w ] J ~ =  ~ - - 2 i k 0 ,  (5b)  

where M is defined by the operator 

M = ~xx + iko , (6) 

and M* is the conjugate complex operator. 
Following [3], we can transform the boundary value problem (4)-(5) into a Cauchy type 

initial value problem by seeking to examine variations of the boundary value Green's function 
with the domain. The results obtained lead to a set of first order non-linear, coupled stochastic 
differential equations of the Riccati type : 

8G11 - 1 + 2ik0 G ~ t -  (ko 2 - k 2 (2)) GZt, (7a) 
~2 

0G12 - ikoG12-(kZ-k2(2))G11Ga2 (7b) 
~2 

c~G22 a 2 -  (k~-kZ(2))GZ2' (7c) 

with the initial conditions 

Gk~(O) = i/2ko, k, 1 = 1, 2 ,  (8) 

where G(x, ~; #) defines the random Green's function associated with the boundary value 
problem (4)-(5); the Gk~'S, k, l=  1, 2, define the boundary values of the domain Green's function, 
i.e., 

 11(2) -- c ( 2 ,  
G12(2) = G(0, 4) = G(2,  0) = a21(2)  , (9) 

= 0) ,  

and the wave field is related to G (x, ~; #) by the relationship 

w(x, 4;/z) = -2 ik0 G(2, x; #). (10) 

In order to determine the complete statistical characteristics of R and T, we need determine 
the probabilistie solutions for G~ and G~z. As we are mainly interested in the mean power 
reflected and transmitted, by the conservation of energy, a knowledge of the mean-power 
reflected uniquely determines the mean power transmitted and consequently, we need only 
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calculate the probabilistic nature of G ~ ~. We shall, therefore, concentrate only on the solution 
associated with Eqns. (7a) and (8). 

By the continuity of the wave field across x = 2, and by the use of Eqns. (3a) and (10) it follows 
that 

-2 ik0G = I + R ,  (11) 

where we have dropped the subscript of G~ 1. Substituting Eqn. (11) into Eqns. (7a) and (8) 
implies the equation for the reflected amplitude, namely, 

02 

~2 

where 

ifik07(2; #) OR _ 2ik0 R + (1+R)2 (12) 
02 2 

with the initial condition 

R(0) = 0.  (13) 

It is convenient to let 

R(2;#)=r(2;l~)e i~ 0 ~ r ~ l ,  0 ~ 0 ~ 2 ~ ,  (14) 

so as to obtain equations in the real random variables r and 0. Upon substituting Eqn. (14) 
into Eqn. (12), adding and subtracting conjugate complex equations, we arrive at the following 
two stochastic equations for the magnitude and the phase of the reflected amplitude, respec- 
tively : 

Or _ ilk07(2; #)( l_r2)s in(~b+2k02)  (15a) 
2 

I (1 + r  2) cos (++  2ko2)1 (15b) / koy(2; 2 + - -  

2 r 

q5 : 0 -  2k 02. (16) 
Equations (15a) and (15b) constitute the appropriate differential equations from which the 
Fokker-Planck equation, or Kolmogorov's forward equation can be constructed for an 
appropriate process 7(2;/~). We should note that these equations are valid for arbitrary 
stochastic processes 7 (2; #) and that the fluctuations in the field need not be small. 

3. Fokker-Planck's equation and the averaged equation 

Let us construct the equation for the conservation of probability when y (2; p) is a white- 
Gaussian process and when the fluctuations about the mean of the random scattering medium 
are considered small, i.e., choose 

E{7(2)} = 0,  (17) 
E{~(21)~(22)} = ~2~(21_22), 

and 
fi = e ~ 1, (18) 

where E {.} defines taking the expected values, i.e., E {. } = Sa {. } dP(/z). 
The process 7 (2; #) is delta-correlated, and therefore, is not mean-square Riemann integrable. 

Consequently, we need consider Eqns. (15a) and (15b) in the It6 sense [13]. Since the white- 
Gaussian process is the formal derivative of the Wiener process (or Brownian motion), i.e. 
7(2)~ dB(2)/d2 we may write Eqns. (15) in the equivalent form of 

ek~ (1 - r 2) sin (q5 + 2k 02) dB (2), (19a) dr = ~ -  

eko [2 ( l+r2)  )] 
dq5 = ~ -  + r cos(qS+Zko)~ dB(2), (19b) 
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where the Wiener process laa.~ n ] c a n  zero and 

E { B ( 2 1 ) B ( 2 2 )  } = a 2 rain (21, 22), 21, 22 > 0 ,  (20) 

and its sample functions are continuous with probability one and are of unbounded variation 
with probability one. 

Suppose now we consider an auxiliary system of stochastic differential equations such that 
their limiting solutions when a certain parameter approaches zero tend to the solutions of 
Eqns. (19a) and (19b). We consider this auxiliary system because Eqns. (19a) and (19b) lead to a 
diffusion operator some of whose coefficients are not uniformly continuous for 2---,0, in which 
case Khas'minskii's averaging theorem is not applicable. In particular, let 

sk~ (1 - r~,) sin (r + 2ko 2)dB(2), (21a) 

~ko F- (1 + r{o,) ,_ ,7 
d4b(6' = 2 L" + ~ ( 6 ) ~ )  cos((p(6)+2ko2)] d B ( 2 ) ,  (21b) 

where 6 ~ 0 varies through the bounded parameter set A. In addition, we will assume for the 
initial conditions that r(6~(0)=r(0 ) and r By studying the dependence of the 
solutions r(6)(2) and r on the parameter 6, it can be shown [14] that r(6) and ~b(6)are con- 
tinuous in mean-square with respect to 6 (certain conditions need be satisfied), and moreover, 

lim sup E { [r(6)(2)- r (2)] 2} = 0 ,  
6~0 2 
lim sup E { [~b(,~)(2)- q$(2)] z} -- 0.  
6~0 2 

Similar results hold for the differentiability of r(o) and ~b(~ with respect to the parameter 6. 
This continuous dependence of the solutions on 6 shall be exploited to obtain the appropriate 
averaged diffusion operator associated with Eqns. (19a) and (19b). 

The Fokker-Planck equation associated with the auxiliary system can now be written down 
immediately as : 

c~P (6' (r, q), 2) 
02 - LPt~)(PO)), (22) 

where L~(~ is the forward diffusion operator associated with the Markov processes r(o)(2; #) 
and ~b(o)(2; p) which are generated by the It6 type equations (21a) and (21b): 

~r k~) 0 .2 ( ~2 ~2 02 
[A(r, qb, 2) ' ]  + [B(r, r 2)-] + [C(r,~b, 2 ) . ] ) ,  (23) = _ 

where 
A (r, ~b, 2) = (1 - r2): sin 2 (q$ + 2k o 2), 

(1 + r2) cos (r + 2ko B ( r , O ,  2) = 2(1-rZ)  sin(q$+2ko2)I2 + (,'+6--) 2) ] ,  (24) 

(I+F) 1: 
c r  [ :  + V+ )cos(e+2k,, )l 

In Eqns. (22), (23) and (24), we have suppressed the subscript 6 on r and q$. For the application 
of the averaging principle, it is convenient to write Eqn. (22) in the following form : 

Op~) s2 k 2 ~2 
I 

0,~ 8 

where 
D = 2 A r + B  + , 

E = B r + 2 C  o , 

F = A r r + B ~ , + C o r  �9 

Z a ~ r r  ~ a ~ r 4 )  ~ " ~ 4 ) ( o  (25) 

(26) 
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Let us now consider the principle of averaging for the solution of the Cauchy problem [1] 
in a convenient form for our use. We remark first that the theorem itself is a study of the limit 
behavior of the diffusion equation whose coefficients oscillate rapidly. We can see this by 
setting s=e22 in Eqn. (25), in which case, all the coefficients become functions of e -2s ,  for 
example, A = A ( r ,  qS, e-2s),  etc., and then we ask for the limiting solution as ~--,0. 

Let I L = (0, L). We shall consider the following equation in the region D x I~, where D = 
{(x 1, x2) :x1E [0, 1], x2@(-  Go, 278]] : 

oe 2 - ,, = 2) + 2) + 2 ) e + d ( 2 ,  4) , (27) 

where 2=(x l ,  x2). In addition, we shall assume that the following conditions are satisfied by 
the coefficients of the Eqn. (27): 

(i) I laJ  is non-negative definite in (2,2)eDxIoo. a~j,b~,c and d are continuous in its 
arguments, are bounded for 2 > 0 and are sufficiently smooth so that a solution to Eqn. (27) 
exists (e > 0). 

(ii) %,  b~, c and d are uniformly continuous in 2 in (2, 2)eD • Io~. 
(iii) the limits of the means* with respect to 2 as 2-+00 exists for a,j, b~, c and d, uniformly in 

2ED. 
(iv) a solution to the following averaged equation exists: 

ap 2 (~2p 2 8 P  
( ~  = i,j=2 1 (a,j(2)) ~ -~ i=IE @,(2)) ~ + ( c ( 2 ) ) e + ( d ( ~ ) )  . (28) 

Khas'minskii's theorem states: 

Let conditions (i)-(iv) be satisfied and let P~(2, 2) be the solution of Eqn. (27) in the region D x I L/~2 , 
satisfying the condition 

lira P~(2, 2) = F(~) ,  (29) 

where F (~2) is a continuous bounded function in D. Furthermore, let fi (2, 2) be a solution of Eqn. (28) 
in the region D x IL, satisfying P (2, L) = F (2). Then 

] ( 2) o 2 
lira sup P 2.-~ - = (30) 
a~O (x, 2)~Dx Ii [;- " 

We can now apply the above theorem to the solution of Eqn. (25). Let a >0.  The only 
condition not satisfied due to a degeneracy of the matrix ][ a j  is the first part of (i). We overcome 
this problem by introducing into aja, j =  1 or 2, a sufficiently smooth and rapidly oscillating 
function ~ (2), such that it satisfies the conditions : (i) ( ~ )  = 0, and (ii) a~j (2, 4) + ~ (2) ~ a* > 0, 

> 0 a parameter, and hence II a J  positive definite. In such a way all the conditions are met. 
The proof for this is not complicated and will not be dealt with here, as we are more interested 
in obtaining the statistical properties of the wave. We now average Eqn. (25) with p~a) (associated 
with aja + ~ ,  j = 1 or 2) and exploit the continuous dependence of p~a) on a to obtain p~a)-+pca). 

Performing the analysis leads to the equation 

8~ - (~am ( P ) ) ,  (31) 

where (2 ' , . ( . ) )  denotes the averaged marginal generator in Eqn. (28) involving r only, and 
is given by 

82 
(.LP., ( . ) )  = ~ r  2 [(1 - r2) 2 (')1 02)  

* The limit of the mean is dcfined by 

l j  "l 
(g(x)) = tim L ,q(2, 2)d2. 

L ~  0 
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and 
e2 k2 ~2 2 (33) 

r =  1 - - 6 -  " 

In deriving Eqn. (32), we have integrated out from the generator in Eqn. (28) the q~ dependence, 
q~ being the phase of the reflection amplitude; moreover, we have used the continuous depen- 
dence of ro~ and q~o~ on the parameter 6, and hence the continuous dependence of P~6) on 6, to 
take the limit Pop-uP as 6--.0. Since the phase ~b is not determined by the solution of Eqn. (31), 
we can conclude that the values of the phase, - 2 k  0 2 < 4)< 2zc-2k02, are equi-probable. 
The solution to Eqn. (31) will be uniformly valid on the interval 2~L/e  2, ~--,0. 

4. Mean power reflected and transmitted 

First, let us determine what initial condition is associated with Eqn. (31). From physical 
considerations, for r = 0, no energy is reflected and so the appropriate initial condition is given 
by 

P (r, 0) = 6 (r). (34) 

By obtaining the solution P(r, r) associated with Eqns. (31)-(34), i.e., the approximate 
transition probability density function for small e, we can determine the complete statistical 
characteristics or r, where r is defined in Eqn. (14). In particular, we shall be interested in the 
mean power reflected defined by 

S 1 E{]R(2; /0]  2} = E{r 2} = rzP(r, z)dr.  (35) 
0 

The mean power transmitted can be obtained from the conservation of energy equation and 
by the use of Eqn. (35), namely, 

E{IR(2;  ~)I2}+E{IT(2; #)l 2} = 1. 

Let us consider the following transformation of variables : 

r = f (u )  = tanh u ,  P(r ,z)  = g(u, z). (36) 

It follows that 

(1 +,-) 
u = f - l ( r ) = � 8 9  u ~ O .  (37) 

Upon substitution of the above transformation into Eqns. (31) and (34) we arrive at the 
equation 

~G 1 0 [~/ ~G] (38) 
' 

where we have set 

(~ (u, z) = sech4ug (u, z) (39) 
and 

(u) = cosh 2 u.  (40) 

It is apparent that the initial condition on G (u, z) should be 

G(u, 0) = 6(u). (41) 

The right-hand side of Eqn. (38) can be recognized as the Beltrami-Laplace operator. By 
analogy to the formulation [15], we obtain the solution to Eqns. (38) and (41). Upon utilizing 
this solution and Eqn. (39) we can write the expression for g(u, r) as 

1 
g (u, ~) = ~ ( (~  e -~r -  ~ u cosh 3 u e ,~/4~ ~ 0.  (42) 
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By the use of Eqns, (35), (36) and (42) we can now write an expression for the approximate  
mean power reflected, namely, 

E {r2~j = tanh 2 u 9 (u, z) dr(u) 
�9 0 

S - u sinh u tanh u e -  ~2/4~ du. (43) 
2 e ~ r ~  o 

By the conservat ion relation we also obtain an approximate  expression for the mean  power 
t ransmit ted 

E{ t2} = E {IT(2;  u)J 2} 

1 t "~ 
- 1 2 (rr ~) e-~z  -~ . o u sinh u tanh u e-"~/4~ du. (44) 

Let us now note the following two things : (i) P is an approximate  density function, and as 
such, it should satisfy I~ Pdr~ 1 for an appropr ia te  domain  of z. Utilizing Eqns. (36) and (42) 
in the normal izat ion condit ion and performing the integration implies 

0 g(u, ~)f'(u)au- (~)~ + erfv~, 

which clearly gives in the limiting case z--+ c~, j'~ gf'du--+ 1; (ii) the approximate  density 
function is in fact the exact density function relative to the measure re(u)= In cosh u, so that,  
#~ O(u, z)f'(u)dm(u)= 1, for all z >~0. 

In Fig. 1, we present a graph of Eqn. (43) which was obtained by numerical  integration. In 
s = ~k o o addition, we compare  this result with that of Papanicolaou  [8] where we have set 1 2 _2 

in Eqn. (3.8), and with the quasil inearization result [3],  where 

E{r  2} = 1-e-4~+O(~c2k2a2e -2~) and we plot E{r2}mi, = 1 - e  -4.  . 

If we consider in Eqns. (15) 7 (2; p) to be a centered bounded  real stochastic process with 
covariance function E {7 (2~)7 0~2)} = F ( [ ) ~ -  221 ) and Y (2 ;p )  satisfying a strong mixing con- 
dition, then the solution P(r, )0 is given by Eqn. (3.10) of [8],  where now r = ( u -  1)~ (u+ 1) -~. 

Ei~'l 
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